
Chapter

2 Basic Data Structures

An astronaut recording a video of a Hubble Space Telescope servicing mission

in 1997. U.S. government image. NASA.

Contents

2.1 Stacks and Queues . 53

2.2 Lists . 60

2.3 Trees . 68

2.4 Exercises . 84

52 Chapter 2. Basic Data Structures

The Internet is designed to route information in discrete packets, which are

at most 1500 bytes in length. Because of this design, any time a video stream is

transmitted on the Internet, it must be subdivided into packets and these packets

must each be individually routed to their destination. In the case of a stored video

file, it is desirable to send packets using the Transmission Control Protocol (TCP),

since this protocol guarantees that all the packets will arrive at their destination in

the correct order. Nevertheless, because of vagaries and errors, the time it takes for

these packets to arrive at their destination can be highly variable. Thus, we need a

way of “smoothing out” these variations in order to avoid long pauses if someone

wants to watch a video at the same time it is being transmitted.

This smoothing is typically achieved is by using a buffer, which is a portion

of computer memory that is used to temporarily store items, as they are being pro-

duced by one computational process and consumed by another. For example, in

this case of video packets arriving via TCP, the networking process is producing the

packets and the playback process is consuming them. Thus, ignoring any rewind-

ing, this producer-consumer model is enforcing a first-in, first-out (FIFO) protocol

for the packets, in that the consumer process is always retrieving the packet that has

been in the buffer the longest. (See Figure 2.1.)

Figure 2.1: Using a buffer to smooth video transmission over the Internet.

Network packets are produced by the TCP process, which inserts packets in the

correct order into the buffer, but does so at a variable rate. Packets are consumed by

the video player process, which removes packets from the buffer at a constant speed

according to the video standard it is using. The buffer enforces a first-in, first-out

(FIFO) protocol and, if it is big enough, it should smooth out the packet production

and consumption so that packets can be processed at the average transmission rate

without annoying pauses. In this chapter, we explore how to implement such a

buffer using a queue data structure, which itself can be implemented with either an

array or a linked list. We also study several other basic data structures, including

stacks, lists, and trees, along with applications of these structures.

2.1. Stacks and Queues 53

2.1 Stacks and Queues

2.1.1 Stacks

A stack is a container of objects that are inserted and removed according to the last-

in first-out (LIFO) principle. Objects can be inserted into a stack at any time, but

only the most-recently inserted (that is, “last”) object can be removed at any time.

The name “stack” is derived from the metaphor of a stack of plates in a spring-

loaded cafeteria plate dispenser. In this case, the fundamental operations involve

the “pushing” and “popping” of plates on the stack.

Example 2.1: Internet web browsers store the addresses of recently visited sites

on a stack. Each time a user visits a new site, that site’s address is “pushed” onto the

stack of addresses. The browser then allows the user to “pop” back to previously

visited sites using the “back” button.

Viewed abstractly, a stack, S, is a container that supports the following two

methods:

push(o): Insert object o at the top of the stack.

pop(): Remove from the stack and return the top object on the

stack, that is, the most recently inserted element still in

the stack; an error occurs if the stack is empty.

A Simple Array-Based Implementation

A stack is easily implemented with an N -element array S, with elements stored

from S[0] to S[t], where t is an integer that gives the index of the top element in S.

Note that one of the important details of such an implementation is that we must

specify some maximum size N for our stack, say, N = 1, 000. (See Figure 2.2.)

S

0 1 2 N–1t

...

Figure 2.2: Implementing a stack with an array S. The top element is in cell S[t].

If we use the convention that arrays begin at index 0, then we would initialize t
to −1 (for an initially empty stack), and we can use this value to also test if a stack

is empty. In addition, we can use this variable to determine the number of elements

in a stack (t+1). In this array-based implementation of a stack, we also must signal

an error condition that arises if we try to insert a new element and the array S is

full. Given this error condition, we can then implement the main methods of a stack

as described in Algorithm 2.3.

54 Chapter 2. Basic Data Structures

Algorithm push(o):

if t + 1 = N then

return that a stack-full error has occurred

t ← t + 1
S[t] ← o
return

Algorithm pop():

if t < 0 then

return that a stack-empty error has occurred

e ← S[t]
S[t] ← null

t ← t − 1
return e

Algorithm 2.3: Implementing a stack with an array.

Turning to the analysis of this array-based implementation of a stack, it should

be clear that each of the stack methods, push and pop, runs in a constant amount

of time. This is because they only involve a constant number of simple arithmetic

operations, comparisons, and assignment statements. That is, in this array-based

implementation of the stack, each method runs in O(1) time.

The array implementation of a stack is both simple and efficient, and is widely

used in a variety of computing applications. Nevertheless, this implementation has

one negative aspect; it must assume a fixed upper bound N on the ultimate size of

the stack. An application may actually need much less space than this, in which

case we would be wasting memory. Alternatively, an application may need more

space than this, in which case our stack implementation may “crash” the application

with an error as soon as it tries to push its (N + 1)st object on the stack. Thus,

even with its simplicity and efficiency, the array-based stack implementation is not

always ideal.

Fortunately, there is another implementation, which is to use a linked list, dis-

cussed later in this chapter. Such an implementation would not have a size limi-

tation (other than that imposed by the total amount of memory on our computer)

and it would use an amount of space proportional to the actual number of ele-

ments stored in the stack. Alternatively, we could also use an extendable table,

as discussed in Section 1.4.2, which could grow in size as the stack grows. In

cases where we have a good estimate on the number of items needing to go in

the stack, however, the array-based implementation is hard to beat, because they

achieve O(1)-time performance for the push and pop operations. Stacks serve a

vital role in a number of computing applications, so it is helpful to have a fast stack

implementation, such as the simple array-based implementation.

2.1. Stacks and Queues 55

Using Stacks for Procedure Calls and Recursion

Stacks have an important application in the runtime environments of programming

languages, such as C, C++, Java, and Python. Each thread in a running program

written in one of these languages has a private stack, called the method stack, which

is used to keep track of local variables and other important information on methods,

as they are invoked during execution. (See Figure 2.4.)

More specifically, during the execution of a program thread, the runtime en-

vironment maintains a stack whose elements are descriptors of the currently ac-

tive (that is, nonterminated) invocations of methods. These descriptors are called

frames. A frame for some invocation of method cool stores the current values of

the local variables and parameters of method cool, as well as information on the

method that called cool and on what needs to be returned to this method.

Program

main() {

cool(i);

int i=5;

}

cool(int j) {

fool(k);

}

14

216

int k=7;

fool:

PC = 320

fool(int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Stack

Figure 2.4: An example of a method stack: Method fool has just been called by

method cool, which itself was previously called by method main. Note the values

of the program counter, parameters, and local variables stored in the stack frames.

When the invocation of method fool terminates, the invocation of method cool will

resume its execution at instruction 217, which is obtained by incrementing the value

of the program counter stored in the stack frame.

56 Chapter 2. Basic Data Structures

The runtime environment keeps the address of the statement the thread is cur-

rently executing in the program in a special register, called the program counter.

When a method, cool, invokes another method, fool, the current value of the pro-

gram counter is recorded in the frame of the current invocation of cool (so the

computer will “know” where to return to when method fool is done).

At the top of the method stack is the frame of the running method—that is,

the method that currently has control of the execution. The remaining elements of

the stack are frames of the suspended methods—that is, methods that have invoked

another method and are currently waiting for it to return control to them upon its

termination. The order of the elements in the stack corresponds to the chain of

invocations of the currently active methods. When a new method is invoked, a

frame for this method is pushed onto the stack. When it terminates, its frame is

popped from the stack and the computer resumes the processing of the previously

suspended method.

The method stack also performs parameter passing to methods. Specifically,

many languages, such as C and Java, use the call-by-value parameter passing pro-

tocol using the method stack. This means that the current value of a variable (or

expression) is what is passed as an argument to a called method. In the case of

a variable x of a primitive type, such as an int or float, the current value of x is

simply the number that is associated with x. When such a value is passed to the

called method, it is assigned to a local variable in the called method’s frame. (This

simple assignment is also illustrated in Figure 2.4.) Note that if the called method

changes the value of this local variable, it will not change the value of the variable

in the calling method.

Recursion

One of the benefits of using a stack to implement method invocation is that it allows

programs to use recursion (Section 1.1.4). That is, it allows a method to call itself

as a subroutine.

Recall that in using this technique correctly, we must always design a recursive

method so that it is guaranteed to terminate at some point (for example, by always

making recursive calls for “smaller” instances of the problem and handling the

“smallest” instances nonrecursively as special cases). We note that if we design

an “infinitely recursive” method, it will not actually run forever. It will instead, at

some point, use up all the memory available for the method stack and generate an

out-of-memory or stack-overflow error. If we use recursion with care, however, the

method stack will implement recursive methods without any trouble. Each call of

the same method will be associated with a different frame, complete with its own

values for local variables. Recursion can be very powerful, as it often allows us to

design simple and efficient programs for fairly difficult problems.

2.1. Stacks and Queues 57

2.1.2 Queues

Another basic data structure is the queue. It is a close “cousin” of the stack, as

a queue is a container of objects that are inserted and removed according to the

first-in first-out (FIFO) principle, as in the video buffering application discussed

at the beginning of this chapter. That is, elements can be inserted at any time, but

only the element that has been in the queue the longest can be removed at any time.

We usually say that elements enter the queue at the rear and are removed from the

front.

Queue Definition

Viewed abstractly, a queue keeps objects in a sequence, where element access and

deletion are restricted to the first element in the sequence, which is called the front

of the queue, and element insertion is restricted to the end of the sequence, which

is called the rear of the queue. Thus, we enforce the rule that items are inserted

and removed according to the FIFO principle. A queue supports the following two

fundamental methods:

enqueue(o): Insert object o at the rear of the queue.

dequeue(): Remove and return from the queue the object at the front;

an error occurs if the queue is empty.

A Simple Array-Based Implementation

As with a stack, we can implement a queue with an array, but the details are slightly

more complicated. In this case, we use an array, Q, with capacity N , for storing

its elements. Since the main rule for a queue is that we insert and delete objects

according to the FIFO principle, we must decide how we are going to keep track of

the front and rear of the queue.

To avoid moving objects once they are placed in Q, we define two variables f
and r, which have the following meanings:

• f is an index to the cell of Q storing the first element of the queue (which is

the next candidate to be removed by a dequeue operation), unless the queue

is empty (in which case f = r).

• r is an index to the next available array cell in Q.

Initially, we assign f = r = 0, and we indicate that the queue is empty by the

condition f = r. Now, when we remove an element from the front of the queue, we

can simply increment f to index the next cell. Likewise, when we add an element,

we can simply increment r to index the next available cell in Q. We have to be a

little careful not to overflow the end of the array, however. Consider, for example,

what happens if we repeatedly enqueue and dequeue a single element N different

58 Chapter 2. Basic Data Structures

times. We would have f = r = N . If we were then to try to insert the element

just one more time, we would get an array-out-of-bounds error (since the N valid

locations in Q are from Q[0] to Q[N − 1]), even though there is plenty of room in

the queue in this case. To avoid this problem and be able to utilize all of the array

Q, we let the f and r indices “wrap around” the end of Q. That is, we now view Q
as a “circular array” that goes from Q[0] to Q[N − 1] and then immediately back

to Q[0] again. (See Figure 2.5.)

N–10 1 2

Q ...

rf

(a)

...Q

N–10 1 2 fr

(b)

Figure 2.5: Implementing a queue using an array Q in a circular fashion: (a) the

“normal” configuration with f ≤ r; (b) the “wrapped around” configuration with

r < f . The cells storing queue elements are highlighted.

Implementing this circular view of Q is pretty easy. Each time we increment f
or r, we simply compute this increment as “(f + 1) mod N” or “(r + 1) mod N ,”

respectively. Recall here that the operator “mod” is the modulo operator, which is

computed by taking the remainder after an integral division, so that, if y is nonzero,

then

x mod y = x − ⌊x/y⌋y.

Consider now the situation that occurs if we enqueue N objects without de-

queuing them. We would have f = r, which is the same condition as when the

queue is empty. Hence, we would not be able to tell the difference between a full

queue and an empty one in this case. Fortunately, this is not a big problem, and

a number of ways for dealing with it exist. For example, we can simply insist

that Q can never hold more than N − 1 objects. The above simple rule for han-

dling a full queue takes care of the final problem with our implementation, and

leads to the pseudocoded descriptions of the main queue methods given in Al-

gorithm 2.6. Note that we may compute the size of the queue by means of the

expression (N − f + r) mod N , which gives the correct result both in the “nor-

mal” configuration (when f ≤ r) and in the “wrapped around” configuration (when

r < f).

2.1. Stacks and Queues 59

Algorithm dequeue():

if f = r then

return an error condition that the queue is empty

temp ← Q[f]
Q[f] ← null

f ← (f + 1) mod N
return temp

Algorithm enqueue(o):

if (N − f + r) mod N = N − 1 then

return an error condition that the queue is full

Q[r] ← o
r ← (r + 1) mod N
return

Algorithm 2.6: Implementing a queue with an array, which is viewed circularly.

Analysis and Applications of Queues

As with our array-based stack implementation, it should be clear that each of the

above queue methods based on implementing the queue with an array executes in

a constant number of statements involving arithmetic operations, comparisons, and

assignments. Thus, each method in this array-based queue implementation runs in

O(1) time.

We have already discussed the application of queues to the problem of buffering

video as it is streamed on the Internet. There are several other applications of

queues, as well. For instance, a queue is an ideal data structure for processing

online ticketing requests. Likewise, a queue is typically used to manage a printer

spooler, which is a process that manages documents that are sent to be output by a

printer.

As with the array-based stack implementation, the only real disadvantage of

the array-based queue implementation is that we artificially set the capacity of the

queue to be some number N . In a real application, we may actually need more

or less queue capacity than this, but if we have a good estimate of the number of

elements that will be in the queue at the same time, then the array-based implemen-

tation is quite efficient. If we don’t have a good estimate, however, then we can

implement a queue using a linked list, which is a data structure we discuss in the

next section.

60 Chapter 2. Basic Data Structures

2.2 Lists

Stacks and queues store elements according to a linear sequence determined by

update operations that act on the “ends” of the sequence. Lists, on the other hand,

which we discuss in this section, maintain linear orders while allowing for accesses

and updates in the “middle.”

2.2.1 Index-Based Lists

Suppose we are given a linear sequence, S, that contains n elements. We can

uniquely refer to each element e of S using an integer in the range [0, n− 1] that is

equal to the number of elements of S that precede e in S. In particular, we define

the index (or rank) of an element e in S to be the number of elements that are

before e in S. Hence, the first element in a sequence is at index 0 and the last

element is at index n − 1.

Note that this notion of “index” is different from indices of cells in an array,

since array cells are static. This notion of index in a list of elements implies that

the index of an element can change depending on whether elements before it are

inserted or removed in its list. Such an index in a list is therefore dynamic and

depends on the operations that are performed on the list. For instance, if we insert a

new element at the beginning of such a list, the index of each of the other elements

increases by one. This definition is consistent, for example, with the ArrayList
class in Java.

We refer to a linear sequence that supports access to its elements by their indices

in this way as an index-based list.

An index-based list, S, storing n elements supports the following methods:

get(r): Return the element of S with index r; an error condition

occurs if r < 0 or r > n − 1.

set(r, e): Replace with e the element at index r and return it; an

error condition occurs if r < 0 or r > n − 1.

add(r, e): Insert a new element e into S to have index r; an error

condition occurs if r < 0 or r > n.

remove(r): Remove from S the element at index r; an error condition

occurs if r < 0 or r > n − 1.

An obvious choice for implementing an index-based list is to use an array A,

where A[i] stores (a reference to) the element with index i. We choose the size

N of array A to be sufficiently large, and we maintain in an instance variable the

actual number n < N of elements in the list. The details of the implementation

of the methods of index-based list are reasonably simple. To implement the get(r)

2.2. Lists 61

operation, for example, we just return A[r]. Implementations of methods add(r, e)
and remove(r) are given in Algorithm 2.7.

Algorithm add(r, e):

if n = N then

return “Array is full.”

if r < n then

for i ← n − 1, n − 2, . . . , r do

A[i + 1] ← A[i] // make room for the new element

A[r] ← e
n ← n + 1

Algorithm remove(r):

e ← A[r] // e is a temporary variable

if r < n − 1 then

for i ← r, r + 1, . . . , n − 2 do

A[i] ← A[i + 1] // fill in for the removed element

n ← n − 1
return e

Algorithm 2.7: Methods in an array implementation of an index-based list.

An important (and time-consuming) part of this implementation involves the

shifting of elements up or down to keep the occupied cells in the array contiguous.

That is, in inserting a new element at rank r we must shift up by 1 the places where

all elements previously of index r and higher are stored. Likewise, in removing an

element at rank r we must shift down by 1 the places where all elements previously

of index r + 1 and higher are stored. These shifting operations are required to

maintain our rule of always storing an element of rank i at index i in A. (See

Figure 2.8 and also Exercise C-2.8.)

S

N–10 1 2 n–1r

(a)

S

N–10 1 2 n–1r

(b)

Figure 2.8: Array-based implementation of an index-based list, S: (a) shifting up

for an insertion at index r; (b) shifting down for a removal at index r.

62 Chapter 2. Basic Data Structures

Analysis of an Array Implementation of an Index-Based List

Table 2.9 shows the running times of the methods of an index-based list imple-

mented with an array. Note that the insertion and removal methods can take time

much longer than O(1). In particular, add(r, e) runs in time Θ(n) in the worst

case. Indeed, the worst case for this operation occurs when r = 0, since all the ex-

isting n elements have to be shifted over. A similar argument applies to the method

remove(r), which runs in O(n) time, because we have to shift n−1 elements in the

worst case (r = 0). In fact, assuming that each possible index is equally likely to

be passed as an argument to these operations, their average running time is Θ(n),
since we would have to shift n/2 elements on average.

Method Time

get(r) O(1)
set(r, e) O(1)

add(r, e) O(n)
remove(r) O(n)

Table 2.9: Worst-case performance of an index-based list with n elements imple-

mented with an array. The space usage is O(N), where N is the size of the array.

Looking more closely at add(r, e) and remove(r), we note that they each run in

time O(n−r+1), for only those elements at rank r and higher have to be shifted up

or down. Thus, inserting or removing an item at the end of a list, using the methods

add(n, e) and remove(n − 1), respectively take O(1) time each. That is, inserting

or removing an element at the end of an index-based list takes constant time, as

would inserting or removing an element within a constant number of cells from

the end. Still, with the above implementation, inserting or removing an element at

the beginning of a list requires shifting every other element by one; hence, it takes

Θ(n) time. Thus, there is an asymmetry to this implementation—updates at the

end are fast, whereas updates at the beginning are slow.

Actually, with a little effort, we can produce an array-based implementation

of this structure that achieves O(1) time for insertions and removals at index 0,

as well as insertions and removals at the end of the list. Achieving this requires

that we give up on our rule that an element at list-index i is stored in the array at

index i, however, as we would have to use a circular array approach like we used

in Section 2.1.2 to implement a queue. We leave the details of this implementation

for an exercise (C-2.8). In addition, we note that an index-based list can also be

implemented to achieve constant-time amortized insertion and removal operations

at the end of a list, by using an extendable table (Section 1.4.2), which, in fact, is

the default implementation of the ArrayList class in Java.

2.2. Lists 63

2.2.2 Linked Lists

Using an index is not the only way to refer to elements in a list. We could alterna-

tively implement a list S so that each element is stored in a special node object with

references (that is, pointers) to the nodes before and after it in the list. In this case,

it could be more natural and efficient to use a node instead of an index to identify

where to access and update a list. In this section, we explore such a way of using

nodes to represent “places” in a list.

To abstract a way of storing elements in a list, we introduce the concept of

position in a list, which formalizes the intuitive notion of “node” that is storing an

element relative to others in the list. In this framework, we view a linked list as

a container of elements that stores each element at a node position and that keeps

these positions arranged in a linear order relative to one another. A position is itself

an object that supports the following simple method:

element(): Return the element stored at this position.

A position (or node) is always defined relatively, that is, in terms of its neigh-

bors. In a list, a position p will always be “after” some position q and “before”

some position s (unless p is the first or last position). A position p, which is associ-

ated with some element e in a list S, does not change, even if the rank of e changes

in S, unless we explicitly remove e (and, hence, destroy position p). Moreover, the

position p does not change even if we replace or swap the element e stored at p with

another element. These facts about positions allow us to define a set of position-

based list methods that take position objects as parameters and also provide position

objects as return values.

Using the concept of position to encapsulate the idea of “node” in a list, we can

define a linked list. This structure supports the following methods for a list, S:

first(): Return the position of the first element of S; an error

occurs if S is empty.

last(): Return the position of the last element of S; an error oc-

curs if S is empty.

before(p): Return the position of the element of S preceding the one

at position p; an error occurs if p is the first position.

after(p): Return the position of the element of S following the one

at position p; an error occurs if p is the last position.

The above methods allow us to refer to relative positions in a list, starting at

the beginning or end, and to be able to move incrementally up or down the list. As

mentioned above, these positions can be thought of as nodes in the list, but note

that there are no specific references to pointers or links to previous or next nodes in

these methods.

64 Chapter 2. Basic Data Structures

We can also include the following update methods for a linked list.

insertBefore(p, e): Insert a new element e into S before position p in S.

insertAfter(p, e): Insert a new element e into S after position p in S.

remove(p): Remove from S the element at position p.

This approach allows us to view an ordered collection of objects in terms of

their places, without worrying about the exact way those places are represented. In

addition, this structure, with its built-in notion of position, is useful in a number of

settings. For example, a simple text editor embeds the notion of positional insertion

and removal, since such editors typically perform all updates relative to a cursor,

which represents the current position in a list of characters being edited.

We can use node objects to implement a linked list, so that a great variety of

operations, including insertion and removal at various places, can run in O(1) time.

A node in a singly linked list stores in a next link a reference to the next node in

the list. Thus, a singly linked list can only be traversed in one direction—from

the head to the tail. A node in a doubly linked list, on the other hand, stores two

references—a next link, which points to the next node in the list, and a prev link,

which points to the previous node in the list. Therefore, a doubly linked list can be

traversed in either direction. Being able to determine the previous and next node

from any given node in a list greatly simplifies list implementation; so let us assume

we are using such doubly linked nodes to implement a linked list.

To simplify updates and searching, it is convenient to add special nodes at both

ends of the list: a header node just before the head of the list, and a trailer node

just after the tail of the list. These “dummy” or sentinel nodes do not store any

element, but their ubiquitous existence allows us to avoid worrying about special

cases for inserting and removing elements at the beginning or end of a list. The

header has a valid next reference but a null prev reference, while the trailer has

a valid prev reference but a null next reference. A doubly linked list with these

sentinels is shown in Figure 2.10. Note that a linked list object would simply need

to store these two sentinels and a size counter that keeps track of the number of

elements (not counting sentinels) in the list.

header

New York Providence San Francisco

trailer

Figure 2.10: A doubly linked list with sentinels, header and trailer, marking the

ends of the list. An empty list would have these sentinels pointing to each other.

2.2. Lists 65

We can simply make the nodes of the linked list implement the position con-

cept, defining a method element(), which returns the element stored at the node.

Thus, the nodes themselves act as positions.

Consider how we might implement the insertAfter(p, e) method, for inserting

an element e after position p. We create a new node v to hold the element e, link

v into its place in the list, and then update the next and prev references of v’s

two new neighbors. This method is given in pseudocode in Algorithm 2.11 and is

illustrated in Figure 2.12.

Algorithm insertAfter(p, e):
Create a new node v
v.element ← e
v.prev ← p // link v to its predecessor

v.next ← p.next // link v to its successor

(p.next).prev ← v // link p’s old successor to v
p.next ← v // link p to its new successor, v
return v // the position for the element e

Algorithm 2.11: Inserting an element e after a position p in a linked list.

header

Baltimore Paris Providence

trailer

(a)header

Baltimore Paris Providence

trailer

New York

(b)header trailer

New York Paris ProvidenceBaltimore

(c)

Figure 2.12: Adding a new node after the position for “Baltimore”: (a) before the

insertion; (b) creating node v and linking it in; (c) after the insertion.

66 Chapter 2. Basic Data Structures

The algorithms for methods insertBefore, insertFirst, and insertLast are similar

to that for method insertAfter; we leave their details as an exercise (R-2.3). Next,

consider the remove(p) method, which removes the element e stored at position p.

To perform this operation, we link the two neighbors of p to refer to one another

as new neighbors—linking out p. Note that after p is linked out, no nodes will be

pointing to p; hence, a garbage collector can reclaim the space for p. This algorithm

is given in Algorithm 2.13 and is illustrated in Figure 2.14. Recalling our use of

sentinels, note that this algorithm works even if p is the first, last, or only real

position in the list.

Algorithm remove(p):
t ← p.element // a temporary variable to hold the return value

(p.prev).next ← p.next // linking out p
(p.next).prev ← p.prev
p.prev ← null // invalidating the position p
p.next ← null
return t

Algorithm 2.13: Removing an element e stored at a position p in a linked list.

header trailer

New York Paris ProvidenceBaltimore

(a)
header trailer

New York Paris ProvidenceBaltimore

(b)
header trailer

New York ProvidenceBaltimore

(c)

Figure 2.14: Removing the object stored at the position for “Paris”: (a) before the

removal; (b) linking out the old node; (c) after the removal (and garbage collection).

2.2. Lists 67

Analyzing List Implementations

Let us consider the performance of the above node-based linked list implementa-

tion. It should not be too difficult to see that all of the methods for a linked list can

be implemented to run in O(1) time using a node-based approach. That is, we can

perform the methods for a linked list to have running times as shown in Table 2.15.

Method Time

first() O(1)
last() O(1)

before(p) O(1)
after(p) O(1)

insertBefore(p, e) O(1)
insertAfter(p, e) O(1)

remove(p) O(1)

Table 2.15: Worst-case performance of a node-based linked list with n elements.

The space usage is O(n), where n is the number of elements in the list.

Thinking generally about accessing elements by either indices or nodes, we

can compare the performance of a linked list to that of an array-based list imple-

mentation. If we need to be accessing elements by their ranks or indices, clearly

an array-based list is more efficient than a linked list, since the only way to deter-

mine the rank of an element e in a linked list is to follow the sequence of pointers

from the node storing e to the end or beginning of its list. Thus, using a linked

list for index-based operations would require O(n) time for each such operation.

Regarding update operations, the linked-list implementation beats the array-based

implementation in the position-based update operations, since it can insert or re-

move elements in the “middle” of a list in constant time, whereas an array-based

implementation takes O(n) time (to keep the list contiguous in the array).

Considering space usage, note that an array requires O(N) space, where N is

the size of the array (unless we utilize an extendable array), while a doubly linked

list uses O(n) space, where n is the number of elements in the sequence. If n
is much less than N , this implies that the asymptotic space usage of a linked-list

implementation is better than that of a fixed-size array, although there is a small

constant factor overhead that is larger for linked lists, since arrays do not need links

to maintain the ordering of their cells.

Array-based and linked-list implementations of lists each have advantages and

disadvantages, therefore. The correct one for a particular application depends on

the operations that are to be performed and the memory space available.

68 Chapter 2. Basic Data Structures

2.3 Trees

Viewed abstractly, a tree is a data structure that stores elements hierarchically. With

the exception of the top element, each element in a tree has a parent element and

zero or more children elements. A tree is usually visualized by placing elements

inside ovals or rectangles, and by drawing the connections between parents and

children with straight lines. (See Figure 2.16.) We typically call the top element

the root of the tree, but it is drawn as the highest element, with the other elements

being connected below (just the opposite of a botanical tree).

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/
hw1 hw2 hw3 pr1 pr2 pr3

grades

marketbuylow sellhigh

grades

Figure 2.16: A tree representing a portion of a file system.

A tree T is a set of nodes storing elements in a parent-child relationship with

the following properties:

• T has a special node r, called the root of T , with no parent node.

• Each node v of T different from r has a unique parent node u.

Note that according to the above definition, a tree cannot be empty, since it must

have at least one node, the root. One could also allow the definition to include

empty trees, but we adopt the convention that a tree always has a root so as to keep

our presentation simple and to avoid having to always deal with the special case of

an empty tree in our algorithms.

If node u is the parent of node v, then we say that v is a child of u. Two nodes

that are children of the same parent are siblings. A node is external if it has no

children, and it is internal if it has one or more children. External nodes are also

known as leaves. The subtree of T rooted at a node v is the tree consisting of all

the descendants of v in T (including v itself). An ancestor of a node is either the

node itself, its parent, or an ancestor of its parent. Conversely, we say that a node v
is a descendant of a node u if u is an ancestor of v.

2.3. Trees 69

Example 2.2: In most operating systems, files are organized hierarchically into

nested directories (also called folders), which are presented to the user in the form

of a tree. (See Figure 2.16.) More specifically, the internal nodes of the tree are

associated with directories and the external nodes are associated with regular files.

In Unix-like operating systems, the root of the tree is appropriately called the “root

directory,” and is represented by the symbol “/.” It is the ancestor of all directories

and files in such a file system.

A tree is ordered if there is a linear ordering defined for the children of each

node; that is, we can identify children of a node as being the first, second, third,

and so on. Ordered trees typically indicate the linear order relationship existing

between siblings by listing them in the correct order.

Example 2.3: A structured document, such as a book, is hierarchically organized

as a tree whose internal nodes are chapters, sections, and subsections, and whose

external nodes are paragraphs, tables, figures, the bibliography, and so on. (See

Figure 2.17.) We could in fact consider expanding the tree further to show para-

graphs consisting of sentences, sentences consisting of words, and words consisting

of characters. In any case, such a tree is an example of an ordered tree, because

there is a well-defined ordering among the children of each node.

...... ¶¶...¶ ¶

Book

Part A Part B ReferencesPreface

...Ch. 1 Ch. 5 Ch. 6 Ch. 9¶ ¶ ¶ ¶

...§ 1.4§ 1.1 § 5.7§ 5.1 § 9.6§ 9.1§ 6.5§ 6.1

Figure 2.17: A tree associated with a book.

A binary tree is an ordered tree in which every node has at most two children. A

binary tree is proper if each internal node has two children. For each internal node

in a binary tree, we label each child as either being a left child or a right child.

These children are ordered so that a left child comes before a right child. The

subtree rooted at a left or right child of an internal node v is called a left subtree

or right subtree, respectively, of v. Of course, even an improper binary tree is still

a general tree, with the property that each internal node has at most two children.

Binary trees have a number of useful applications, including the following.

70 Chapter 2. Basic Data Structures

Example 2.4: An arithmetic expression can be represented by a tree whose ex-

ternal nodes are associated with variables or constants, and whose internal nodes

are associated with one of the operators +, −, ×, and /. (See Figure 2.18.) Each

node in such a tree has a value associated with it.

• If a node is external, then its value is that of its variable or constant.

• If a node is internal, then its value is defined by applying its operation to the

values of its children.

Such an arithmetic expression tree is a proper binary tree, since each of the oper-

ators +, −, ×, and / take exactly two operands. Of course, if we were to allow

for unary operators, like negation (−), as in “−x,” then we could have an improper

binary tree.

/

3 1

3 2

9 5

3

47

6

+

+

+

–

– –

Figure 2.18: A binary tree representing an arithmetic expression. This tree repre-

sents the expression ((((3 + 1) × 3)/((9 − 5) + 2)) − ((3 × (7 − 4)) + 6)). The

value associated with the internal node labeled “/” is 2.

2.3.1 A Tree Definition

Viewed abstractly, a tree stores elements at positions, which, as with positions in

a list, are defined relative to neighboring positions. The positions in a tree are its

nodes, and neighboring positions satisfy the parent-child relationships that define a

valid tree. Therefore, we use the terms “position” and “node” interchangeably for

trees. As with a list position, a position object for a tree supports the element()
method, which returns the object at this position. The real power of node positions

in a tree, however, comes from the following accessor methods for a tree:

root(): Return the root of the tree.

parent(v): Return the parent of node v; an error occurs if v is root.

children(v): Return a set containing the children of node v.

2.3. Trees 71

If a tree T is ordered, then the children(v) operation returns the children of v in

order. If v is an external node, then children(v) is an empty set.

In addition, we also include the following query methods:

isInternal(v): Test whether node v is internal.

isExternal(v): Test whether node v is external.

isRoot(v): Test whether node v is the root.

There are also a number of methods a tree should support that are not necessarily

related to its tree structure. Such generic methods include the following:

size(): Return the number of nodes in the tree.

elements(): Return a set containing all the elements stored at nodes

of the tree.

positions(): Return a set containing all the nodes of the tree.

swapElements(v, w): Swap the elements stored at the nodes v and w.

replaceElement(v, e): Replace with e and return the element stored at node v.

We do not define any specialized update methods for a tree here. Instead, let

us reserve the potential to define different tree update methods in conjunction with

specific tree applications.

2.3.2 Tree Traversal

In this section, we present algorithms for performing some important traversal op-

erations on a tree.

Assumptions

In order to analyze the running time of tree-based algorithms, we make the follow-

ing assumptions on the running times of various methods for a tree:

• The accessor methods root() and parent(v) take O(1) time.

• The query methods isInternal(v), isExternal(v), and isRoot(v) take O(1)
time, as well.

• The accessor method children(v) takes O(cv) time, where cv is the number

of children of v.

• The generic methods swapElements(v, w) and replaceElement(v, e) take

O(1) time.

• The generic methods elements() and positions(), which return sets, take

O(n) time, where n is the number of nodes in the tree.

72 Chapter 2. Basic Data Structures

In Section 2.3.4, we present data structures for trees that satisfy the above as-

sumptions. Before we describe how to implement a tree using a concrete data

structure, however, let us describe how we can use the methods for an abstract tree

structure to solve some interesting problems for trees.

Depth and Height

Let v be a node of a tree T . The depth of v is the number of ancestors of v,

excluding v itself. Note that this definition implies that the depth of the root of T
is 0. The depth of a node v can also be recursively defined as follows:

• If v is the root, then the depth of v is 0.

• Otherwise, the depth of v is one plus the depth of the parent of v.

Based on the above definition, the recursive algorithm depth, shown in Algo-

rithm 2.19, computes the depth of a node v of T by calling itself recursively on

the parent of v, and adding 1 to the value returned.

Algorithm depth(T, v):

if T.isRoot(v) then

return 0
else

return 1 + depth(T, T.parent(v))

Algorithm 2.19: Algorithm depth for computing the depth of a node v in a tree T .

The running time of algorithm depth(T, v) is O(1 + dv), where dv denotes the

depth of the node v in the tree T , because the algorithm performs a constant-time

recursive step for each ancestor of v. Thus, in the worst case, the depth algorithm

runs in O(n) time, where n is the total number of nodes in the tree T , since some

nodes may have nearly this depth in T . Although such a running time is a function

of the input size, it is more accurate to characterize the running time in terms of the

parameter dv, since this will often be much smaller than n.

The height of a tree T is equal to the maximum depth of an external node of T .

While this definition is correct, it does not lead to an efficient algorithm. Indeed,

if we were to apply the above depth-finding algorithm to each node in the tree T ,

we would derive an O(n2)-time algorithm to compute the height of T . We can do

much better, however, using the following recursive definition of the height of a

node v in a tree T :

• If v is an external node, then the height of v is 0.

• Otherwise, the height of v is one plus the maximum height of a child of v.

The height of a tree T is the height of the root of T .

2.3. Trees 73

Algorithm height, shown in Algorithm 2.20 computes the height of tree T in

an efficient manner by using the above recursive definition of height. The algo-

rithm is expressed by a recursive method height(T, v) that computes the height of

the subtree of T rooted at a node v. The height of tree T is obtained by calling

height(T, T.root()).

Algorithm height(T, v):

if T.isExternal(v) then

return 0
else

h = 0
for each w ∈ T.children(v) do

h = max(h, height(T, w))
return 1 + h

Algorithm 2.20: Algorithm height for computing the height of the subtree of tree

T rooted at a node v.

The height algorithm is recursive, and if it is initially called on the root of T ,

it will eventually be called once on each node of T . Thus, we can determine the

running time of this method by an amortization argument where we first determine

the amount of time spent at each node (on the nonrecursive part), and then sum this

time bound over all the nodes. The computation of a set returned by children(v)
takes O(cv) time, where cv denotes the number of children of node v. Also, the for
loop has cv iterations, and each iteration of the loop takes O(1) time plus the time

for the recursive call on a child of v. Thus, the algorithm height spends O(1 + cv)
time at each node v, and its running time is O(

∑
v∈T

(1+cv)). In order to complete

the analysis, we make use of the following property.

Theorem 2.5: Let T be a tree with n nodes, and let cv denote the number of

children of a node v of T . Then
∑

v∈T

cv = n − 1.

Proof: Each node of T , with the exception of the root, is a child of another node,

and thus contributes one unit to the summation
∑

v∈T
cv.

By Theorem 2.5, the running time of Algorithm height when called on the root

of T is O(n), where n is the number of nodes of T .

A traversal of a tree T is a systematic way of accessing, or “visiting,” all the

nodes of T . We next present basic traversal schemes for trees, called preorder and

postorder traversals.

74 Chapter 2. Basic Data Structures

Preorder Traversal

In a preorder traversal of a tree T , the root of T is visited first and then the sub-

trees rooted at its children are traversed recursively. If the tree is ordered, then the

subtrees are traversed according to the order of the children. The specific action

associated with the “visit” of a node v depends on the application of this traversal,

and could involve anything from incrementing a counter to performing some com-

plex computation for v. The pseudocode for the preorder traversal of the subtree

rooted at a node v is shown in Algorithm 2.21. We initially call this routine as

preorder(T, T.root()).

Algorithm preorder(T, v):

perform the “visit” action for node v
for each child w of v do

recursively traverse the subtree rooted at w by calling preorder(T, w)

Algorithm 2.21: Algorithm preorder.

The preorder traversal algorithm is useful for producing a linear ordering of

the nodes of a tree where parents must always come before their children in the

ordering. Such orderings have several different applications; we explore a simple

instance of such an application in the next example.

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

Figure 2.22: Preorder traversal of an ordered tree.

Example 2.6: The preorder traversal of the tree associated with a document, as

in Example 2.3, examines an entire document sequentially, from beginning to end.

If the external nodes are removed before the traversal, then the traversal examines

the table of contents of the document. (See Figure 2.22.)

The analysis of preorder traversal is actually similar to that of algorithm height
given above. At each node v, the nonrecursive part of the preorder traversal algo-

rithm requires time O(1 + cv), where cv is the number of children of v. Thus, by

Theorem 2.5, the overall running time of the preorder traversal of T is O(n).

2.3. Trees 75

Postorder Traversal

Another important tree traversal algorithm is the postorder traversal. This algo-

rithm can be viewed as the opposite of the preorder traversal, because it recursively

traverses the subtrees rooted at the children of the root first, and then visits the root.

It is similar to the preorder traversal, however, in that we use it to solve a particular

problem by specializing an action associated with the “visit” of a node v. Still,

as with the preorder traversal, if the tree is ordered, we make recursive calls for

the children of a node v according to their specified order. Pseudo-code for the

postorder traversal is given in Algorithm 2.23.

Algorithm postorder(T, v):

for each child w of v do

recursively traverse the subtree rooted at w by calling postorder(T, w)
perform the “visit” action for node v

Algorithm 2.23: Method postorder.

The name of the postorder traversal comes from the fact that this traversal

method will visit a node v after it has visited all the other nodes in the subtree

rooted at v. (See Figure 2.24.)

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

Figure 2.24: Postorder traversal of the ordered tree of Figure 2.22.

The analysis of the running time of a postorder traversal is analogous to that

of a preorder traversal. The total time spent in the nonrecursive portions of the

algorithm is proportional to the time spent visiting the children of each node in

the tree. Thus, a postorder traversal of a tree T with n nodes takes O(n) time,

assuming that visiting each node takes O(1) time. That is, the postorder traversal

runs in linear time.

The postorder traversal method is useful for solving problems where we wish

to compute some property for each node v in a tree, but computing that property

for v requires that we have already computed that same property for v’s children.

76 Chapter 2. Basic Data Structures

2.3.3 Binary Trees

One kind of tree that is of particular interest is the binary tree. As we mentioned in

Section 2.3, a proper binary tree is an ordered tree in which each internal node has

exactly two children. We make the convention that, unless otherwise stated, binary

trees are assumed to be proper. Note that our convention for binary trees is made

without loss of generality, for we can easily convert any improper binary tree into a

proper one, as we explore in Exercise C-2.16. Even without such a conversion, we

can consider an improper binary tree as proper, simply by viewing missing external

nodes as “null nodes” or place holders that still count as nodes.

Viewed abstractly, a binary tree is a specialization of a tree that supports three

additional accessor methods:

leftChild(v): Return the left child of v; an error condition occurs if v
is an external node.

rightChild(v): Return the right child of v; an error condition occurs if v
is an external node.

sibling(v): Return the sibling of node v; an error condition occurs if

v is the root.

Note that these methods must have additional error conditions if we are dealing with

improper binary trees. For example, in an improper binary tree, an internal node

may not have the left child or right child. We do not include here any methods for

updating a binary tree, for such methods can be created as required in the context

of specific needs.

Properties of Binary Trees

We denote the set of all nodes of a tree T at the same depth d as the level d of T .

In a binary tree, level 0 has one node (the root), level 1 has at most two nodes (the

children of the root), level 2 has at most four nodes, and so on. (See Figure 2.25.) In

general, level d has at most 2d nodes, which implies the following theorem (whose

proof is left to Exercise R-2.6).

Theorem 2.7: Let T be a proper binary tree with n nodes, and let h denote the

height of T . Then T has the following properties:

1. The number of external nodes in T is at least h + 1 and at most 2h.

2. The number of internal nodes in T is at least h and at most 2h − 1.

3. The total number of nodes in T is at least 2h + 1 and at most 2h+1 − 1.

4. The height of T is at least log(n + 1) − 1 and at most (n − 1)/2, that is,

log(n + 1) − 1 ≤ h ≤ (n − 1)/2.

2.3. Trees 77

...

0

..
. ...

1

2

3

1

..
.

2

4

8

Level Nodes

Figure 2.25: Maximum number of nodes in the levels of a binary tree.

In addition, we also have the following.

Theorem 2.8: In a proper binary tree T , the number of external nodes is 1 more

than the number of internal nodes.

Proof: The proof is by induction. If T itself has only one node v, then v is exter-

nal, and the proposition clearly holds. Otherwise, we remove from T an (arbitrary)

external node w and its parent v, which is an internal node. If v has a parent u, then

we reconnect u with the former sibling z of w, as shown in Figure 2.26. This op-

eration, which we call removeAboveExternal(w), removes one internal node and

one external node, and it leaves the tree being a proper binary tree. Thus, by the

inductive hypothesis, the number of external nodes in this tree is one more than the

number of internal nodes. Since we removed one internal and one external node to

reduce T to this smaller tree, this same property must hold for T .

v

u

wz

u

z

u

z

(a) (b) (c)

Figure 2.26: Operation removeAboveExternal(w), which removes an external

node and its parent node, used in the justification of Theorem 2.8.

Note that the above relationship does not hold, in general, for nonbinary trees.

In subsequent chapters, we explore some important applications of the above

facts. Before we can discuss such applications, however, we should first understand

more about how binary trees are traversed and represented.

78 Chapter 2. Basic Data Structures

Traversals of a Binary Tree

As with general trees, computations performed on binary trees often involve tree

traversals. In this section, we present binary tree traversal algorithms. As for run-

ning times, in addition to the assumptions on the running time for tree methods

made in Section 2.3.2, we assume that, for a binary tree, the children(v) opera-

tion takes O(1) time, because each node has either zero or two children. Likewise,

we assume that methods leftChild(v), rightChild(v), and sibling(v) each take O(1)
time.

Preorder Traversal of a Binary Tree

Since any binary tree can also be viewed as a general tree, the preorder traversal

for general trees (Code Fragment 2.21) can be applied to any binary tree. We can

simplify the pseudocode in the case of a binary tree traversal, however, as we show

in Algorithm 2.27.

Algorithm binaryPreorder(T, v):

perform the “visit” action for node v
if v is an internal node then

binaryPreorder(T, T.leftChild(v)) // recursively traverse left subtree

binaryPreorder(T, T.rightChild(v)) // recursively traverse right subtree

Algorithm 2.27: Algorithm binaryPreorder that performs the preorder traversal of

the subtree of a binary tree T rooted at node v.

Postorder Traversal of a Binary Tree

Analogously, the postorder traversal for general trees (Algorithm 2.23) can be spe-

cialized for binary trees, as shown in Algorithm 2.28.

Algorithm binaryPostorder(T, v):

if v is an internal node then

binaryPostorder(T, T.leftChild(v)) // recursively traverse left subtree

binaryPostorder(T, T.rightChild(v)) // recursively traverse right subtree

perform the “visit” action for the node v

Algorithm 2.28: Algorithm binaryPostorder for performing the postorder traversal

of the subtree of a binary tree T rooted at v.

Interestingly, the specialization of the general preorder and postorder traversal

methods to binary trees suggests a third traversal in a binary tree that is different

from both the preorder and postorder traversals.

2.3. Trees 79

Inorder Traversal of a Binary Tree

An additional traversal method for a binary tree is the inorder traversal. In this

traversal, we visit a node between the recursive traversals of its left and right sub-

trees, as shown in Algorithm 2.29.

Algorithm inorder(T, v):

if v is an internal node then

inorder(T, T.leftChild(v)) // recursively traverse left subtree

perform the “visit” action for node v
if v is an internal node then

inorder(T, T.rightChild(v)) // recursively traverse right subtree

Algorithm 2.29: Algorithm inorder for performing the inorder traversal of the sub-

tree of a binary tree T rooted at a node v.

The inorder traversal of a binary tree T can be informally viewed as visiting

the nodes of T “from left to right.” Indeed, for every node v, the inorder traversal

visits v after all the nodes in the left subtree of v and before all the nodes in the

right subtree of v. (See Figure 2.30.)

3 1 9 5 47

+ 3 2 3

+ 6

/ +

Figure 2.30: Inorder traversal of a binary tree.

A Unified Tree Traversal Framework

Each traversal visits the nodes of a tree in a certain order and is guaranteed to visit

each node exactly once. We can unify the tree-traversal algorithms given above into

a single framework, however, by relaxing the requirement that each node be visited

exactly once. The resulting traversal method is called the Euler tour traversal,

which we study next. The advantage of this traversal is that it allows for more

general kinds of algorithms to be expressed easily.

80 Chapter 2. Basic Data Structures

The Euler Tour Traversal of a Binary Tree

The Euler tour traversal of a binary tree T can be informally defined as a “walk”

around T , where we start by going from the root toward its left child, viewing the

edges of T as being “walls” that we always keep to our left. (See Figure 2.31.)

Each node v of T is encountered three times by the Euler tour:

• “On the left” (before the Euler tour of v’s left subtree)

• “From below” (between the Euler tours of v’s two subtrees)

• “On the right” (after the Euler tour of v’s right subtree).

If v is external, then these three “visits” actually all happen at the same time.

3 1 9 5 47

+ 3 2– 3 –

+ 6

/ +

–

Figure 2.31: Euler tour traversal of a binary tree.

We give pseudocode for the Euler tour of the subtree rooted at a node v in

Algorithm 2.32.

Algorithm eulerTour(T, v):

perform the action for visiting node v on the left

if v is an internal node then

recursively tour the left subtree of v by calling eulerTour(T, T.leftChild(v))
perform the action for visiting node v from below

if v is an internal node then

recursively tour the right subtree of v by calling

eulerTour(T, T.rightChild(v))
perform the action for visiting node v on the right

Algorithm 2.32: Algorithm eulerTour for computing the Euler tour traversal of the

subtree of a binary tree T rooted at a node v.

2.3. Trees 81

The preorder traversal of a binary tree is equivalent to an Euler tour traversal

such that each node has an associated “visit” action occur only when it is encoun-

tered on the left. Likewise, the inorder and postorder traversals of a binary tree

are equivalent to an Euler tour such that each node has an associated “visit” action

occur only when it is encountered from below or on the right, respectively.

The Euler tour traversal extends the preorder, inorder, and postorder traversals,

but it can also perform other kinds of traversals. For example, suppose we wish

to compute the number of descendants of each node v in an n node binary tree T .

We start an Euler tour by initializing a counter to 0, and then increment the counter

each time we visit a node on the left. To determine the number of descendants of

a node v, we compute the difference between the values of the counter when v is

visited on the left and when it is visited on the right, and add 1. This simple rule

gives us the number of descendants of v, because each node in the subtree rooted

at v is counted between v’s visit on the left and v’s visit on the right. Therefore, we

have an O(n)-time method for computing the number of descendants of each node

in T .

The running time of the Euler tour traversal is easy to analyze, assuming visit-

ing a node takes O(1) time. Namely, in each traversal, we spend a constant amount

of time at each node of the tree during the traversal, so the overall running time

is O(n) for an n node tree.

Another application of the Euler tour traversal is to print a fully parenthe-

sized arithmetic expression from its expression tree (Example 2.4). The method

printExpression, shown in Algorithm 2.33, accomplishes this task by performing

the following actions in an Euler tour:

• “On the left” action: if the node is internal, print “(”

• “From below” action: print the value or operator stored at the node

• “On the right” action: if the node is internal, print “).”

Algorithm printExpression(T, v):

if T.isExternal(v) then

print the value stored at v
else

print “(”

printExpression(T, T.leftChild(v))
print the operator stored at v
printExpression(T, T.rightChild(v))
print “)”

Algorithm 2.33: An algorithm for printing the arithmetic expression associated with

the subtree of an arithmetic expression tree T rooted at v.

Having presented these pseudocode examples, we now describe a number of

efficient ways of realizing the tree abstraction by concrete data structures, such as

arrays and linked structures.

82 Chapter 2. Basic Data Structures

2.3.4 Data Structures for Representing Trees

In this section, we describe concrete data structures for representing trees.

A Linked Structure for Binary Trees

A natural way to implement a binary tree T is to use a linked structure. In this

approach we represent each node v of T by an object with references to the element

stored at v and the positions associated with the children and parent of v. We show

a linked structure representation of a binary tree in Figure 2.34.

parent

element

rightleft

root

Baltimore Chicago New York Providence Seattle

size

5

(a) (b)

Figure 2.34: An example linked data structure for representing a binary tree: (a)

object associated with a node; (b) a structure for a binary tree with five nodes.

If v is the root of T , then the reference to the parent node is null, and if v
is an external node, then the references to the children of v are null. If we wish

to save space for cases when external nodes are empty, then we can have refer-

ences to empty external nodes be null. That is, we can allow a reference from an

internal node to an external node child to be null. In addition, it is fairly straight-

forward to implement each of the methods size(), isEmpty(), swapElements(v, w),
and replaceElement(v, e) in O(1) time. Moreover, the method positions() can be

implemented by performing an inorder traversal, and implementing the method

elements() is similar. Thus, methods positions() and elements() take O(n) time

each. Considering the space used by this data structure, note that there is a constant-

sized object for every node of tree T . Thus, the overall space used is O(n).

2.3. Trees 83

A Linked Structure for General Trees

We can extend the linked structure for binary trees to represent general trees. Since

there is no limit on the number of children that a node v in a general tree can have,

we use a container (for example, a list or array) to store the children of v, instead of

using instance variables. This structure is schematically illustrated in Figure 2.35,

assuming we implement the container for a node as a list.

parent

childrenContainer

element

Baltimore Chicago

New York

Providence Seattle

(a) (b)

Figure 2.35: The linked structure for a tree: (a) the object associated with a node;

(b) the portion of the data structure associated with a node and its children.

We note that the performance of a linked implementation of a tree, shown in

Table 2.36, is similar to that of the linked implementation of a binary tree. The

main difference is that in the implementation of a tree we use an efficient container,

such as a list or array, to store the children of each node v, instead of direct links to

exactly two children.

Operation Time

size, isEmpty O(1)
positions, elements O(n)

swapElements, replaceElement O(1)
root, parent O(1)
children(v) O(cv)

isInternal, isExternal, isRoot O(1)

Table 2.36: Running times of the methods of an n-node tree implemented with a

linked structure. We let cv denote the number of children of a node v.

84 Chapter 2. Basic Data Structures

2.4 Exercises

Reinforcement

R-2.1 Suppose you are given an array, A, containing n numbers in order. Describe in

pseudocode an efficient algorithm for reversing the order of the numbers in A
using a single for-loop that indexes through the cells of A, to insert each element

into a stack, and then another for-loop that removes the elements from the stack

and puts them back into A in reverse order. What is the running time of this

algorithm?

R-2.2 Solve the previous exercise using a queue instead of stack. That is, suppose

you are given an array, A, containing n numbers in order, as in the previous

exercise. Describe in pseudocode an efficient algorithm for reversing the order

of the numbers in A using a single for-loop that indexes through the cells of A,

to insert each element into a queue, and then another for-loop that removes the

elements from the queue and puts them back into A in reverse order. What is the

running time of this algorithm?

R-2.3 Describe, using pseudocode, an implementation of the method insertBefore(p, e),
for a linked list, assuming the list is implemented using a doubly linked list.

R-2.4 Draw an expression tree that has four external nodes, storing the numbers 1,

5, 6, and 7 (with each number stored one per external node but not necessarily

in this order), and has three internal nodes, each storing an operation from the

set {+,−,×, /} of binary arithmetic operators, so that the value of the root is

21. The operators are assumed to return rational numbers (not integers), and an

operator may be used more than once (but we only store one operator per internal

node).

R-2.5 Let T be an ordered tree with more than one node. Is it possible that the preorder

traversal of T visits the nodes in the same order as the postorder traversal of T ?

If so, give an example; otherwise, argue why this cannot occur. Likewise, is it

possible that the preorder traversal of T visits the nodes in the reverse order of

the postorder traversal of T ? If so, give an example; otherwise, argue why this

cannot occur.

R-2.6 Answer the following questions so as to justify Theorem 2.7.

a. Draw a binary tree with height 7 and maximum number of external nodes.

b. What is the minimum number of external nodes for a binary tree with

height h? Justify your answer.

c. What is the maximum number of external nodes for a binary tree with

height h? Justify your answer.

d. Let T be a binary tree with height h and n nodes. Show that

log(n + 1) − 1 ≤ h ≤ (n − 1)/2.

e. For which values of n and h can the above lower and upper bounds on h
be attained with equality?

2.4. Exercises 85

R-2.7 Let T be a binary tree such that all the external nodes have the same depth. Let

De be the sum of the depths of all the external nodes of T , and let Di be the sum

of the depths of all the internal nodes of T . Find constants a and b such that

De + 1 = aDi + bn,

where n is the number of nodes of T .

R-2.8 Let T be a binary tree with n nodes, and let p be the level numbering of the nodes

of T , so that the root, r, is numbered as p(r) = 1, and a node v has left child

numbered 2p(v) and right child numbered 2p(v) + 1, if they exist.

a. Show that, for every node v of T , p(v) ≤ 2(n+1)/2 − 1.

b. Show an example of a binary tree with at least five nodes that attains the

above upper bound on the maximum value of p(v) for some node v.

Creativity

C-2.1 A double-ended queue, or deque, is a list that allows for insertions and removals

at either its head or its tail. Describe a way to implement a deque using a doubly

linked list, so that every operation runs in O(1) time.

C-2.2 Suppose that a friend has implemented a deque, as defined in the previous exer-

cise, using a singly linked list, but hasn’t given you the details, for example, of

whether the links go forward or backward in the list or whether sentinel nodes

are used. Nevertheless, show that one of the insertion or removal methods must

take Ω(n) time, where n is the number of elements in the deque.

C-2.3 Describe, in pseudocode, a link-hopping method for finding the middle node of

a doubly linked list with header and trailer sentinels, and an odd number of real

nodes between them. (Note: This method must only use link hopping; it cannot

use a counter.) What is the running time of this method?

C-2.4 Describe how to implement a queue using two stacks, so that the amortized run-

ning time for dequeue and enqueue is O(1), assuming that the stacks support

constant-time push, pop, and size methods. What is the worst-case running

time of the enqueue() and dequeue() methods in this case?

C-2.5 Describe how to implement a stack using two queues. What is the running time

of the push() and pop() methods in this case?

C-2.6 Describe a recursive algorithm for enumerating all permutations of the numbers

{1, 2, . . . , n}. What is the running time of your method?

C-2.7 Show that a stack and a queue can be used to realize any permutation. That is,

suppose you are given an empty stack, S, and the numbers, 1, 2, . . . , n, in this

order, initially stored in a queue, Q. Show how to use only these two structures,

and at most a constant number of additional registers, to result in any given per-

mutation, π, of the numbers, 1, 2, . . . , n, stored in the Q in the order specified by

π. What is the running time of your algorithm?

86 Chapter 2. Basic Data Structures

C-2.8 Describe the structure and pseudocode for an array-based implementation of an

index-based list that achieves O(1) time for insertions and removals at index 0,

as well as insertions and removals at the end of the list. Your implementation

should also provide for a constant-time get method.

C-2.9 Using an array-based list, describe an efficient way of putting a sequence rep-

resenting a deck of n cards into random order. Use the function randomInt(n),

which returns a random number between 0 and n − 1, inclusive. Your method

should guarantee that every possible ordering is equally likely. What is the run-

ning time of your method?

C-2.10 Design an algorithm for drawing a binary tree, using quantities computed in a

tree traversal.

C-2.11 Design algorithms for the following operations for a node v in a binary tree T :

• preorderNext(v): return the node visited after v in a preorder traversal

of T
• inorderNext(v): return the node visited after v in an inorder traversal of T
• postorderNext(v): return the node visited after v in a postorder traversal

of T .

What are the worst-case running times of your algorithms?

C-2.12 Give an O(n)-time algorithm for computing the depth of all the nodes of a tree

T , where n is the number of nodes of T .

C-2.13 The balance factor of an internal node v of a binary tree is the difference between

the heights of the right and left subtrees of v. Show how to specialize the Euler

tour traversal to print the balance factors of all the nodes of a binary tree.

C-2.14 Two ordered trees T ′ and T ′′ are said to be isomorphic if one of the following

holds:

• Both T ′ and T ′′ consist of a single node

• Both T ′ and T ′′ have the same number k of subtrees, and the ith subtree of

T ′ is isomorphic to the ith subtree of T ′′, for i = 1, . . . , k.

Design an algorithm that tests whether two given ordered trees are isomorphic.

What is the running time of your algorithm?

C-2.15 Let a visit action in the Euler tour traversal be denoted by a pair (v, a), where

v is the visited node and a is one of left, below, or right. Design an algorithm

for performing operation tourNext(v, a), which returns the visit action (w, b)
following (v, a). What is the worst-case running time of your algorithm?

C-2.16 Show how to represent an improper binary tree by means of a proper one.

C-2.17 Let T be a binary tree with n nodes. Define a Roman node to be a node v in T ,

such that the number of descendants in v’s left subtree differ from the number

of descendants in v’s right subtree by at most 5. Describe a linear-time method

for finding each node v of T , such that v is not a Roman node, but all of v’s

descendants are Roman nodes.

2.4. Exercises 87

C-2.18 Describe in pseudocode a nonrecursive method for performing an Euler tour

traversal of a binary tree that runs in linear time and does not use a stack.

Hint: You can tell which visit action to perform at a node by taking note of where

you are coming from.

C-2.19 Describe in pseudocode a nonrecursive method for performing an inorder traver-

sal of a binary tree in linear time.

C-2.20 Let T be a binary tree with n nodes. Give a linear-time method that uses the

methods of the BinaryTree interface to traverse the nodes of T by increasing

values of the level numbering function p given in Exercise R-2.8. This traversal

is known as the level order traversal.

C-2.21 The path length of a tree T is the sum of the depths of all the nodes in T . Describe

a linear-time method for computing the path length of a tree T (which is not

necessarily binary).

C-2.22 Define the internal path length, I(T), of a tree T to be the sum of the depths of

all the internal nodes in T . Likewise, define the external path length, E(T), of

a tree T to be the sum of the depths of all the external nodes in T . Show that if

T is a binary tree with n internal nodes, then E(T) = I(T) + 2n.

Applications

A-2.1 In the children’s game “hot potato,” a group of n children sit in a circle passing an

object, called the “potato,” around the circle (say in a clockwise direction). The

children continue passing the potato until a leader rings a bell, at which point

the child holding the potato must leave the game, and the other children close up

the circle. This process is then continued until there is only one child remaining,

who is declared the winner. Using a list, describe an efficient method for imple-

menting this game. Suppose the leader always rings the bell immediately after

the potato has been passed k times. (Determining the last child remaining in this

variation of hot potato is known as the Josephus problem.) What is the running

time of your method in terms of n and k, assuming the list is implemented with

a doubly linked list? What if the list is implemented with an array?

A-2.2 Suppose you work for a company, iPuritan.com, that has strict rules for when two

employees, x and y, may date one another, requiring approval from their lowest-

level common supervisor. The employees at iPuritan.com are organized in a tree,

T , such that each node in T corresponds to an employee and each employee, z,

is considered a supervisor for all of the employees in the subtree of T rooted at

z (including z itself). The lowest-level common supervisor for x and y is the

employee lowest in the organizational chart, T , that is a supervisor for both x
and y. Thus, to find a lowest-level common supervisor for the two employees,

x and y, you need to find the lowest common ancestor (LCA) between the two

nodes for x and y, which is the lowest node in T that has both x and y as de-

scendants (where we allow a node to be a descendant of itself). Given the nodes

corresponding to the two employees x and y, describe an efficient algorithm for

finding the supervisor who may approve whether x and y may date each other,

that is, the LCA of x and y in T . What is the running time of your method?

88 Chapter 2. Basic Data Structures

A-2.3 Suppose you work for a company, iPilgrim.com, whose n employees are or-

ganized in a tree T , so that each node is associated with an employee and each

employee is considered a supervisor for all the employees (including themselves)

in his or her subtree in T , as in the previous exercise. Furthermore, suppose that

communication in iPilgrim is done the “old fashioned” way, where, for an em-

ployee, x, to send a message to an employee, y, x must route this message up

to a lowest-level common supervisor of x and y, who then routes this message

down to y. The problem is to design an algorithm for finding the length of a

longest route that any message must travel in iPilgrim.com. That is, for any node

v in T , let dv denote the depth of v in T . The distance between two nodes v
and w in T is dv + dw − 2du, where u is the LCA u of v and w (as defined in

the previous exercise). The diameter of T is the maximum distance between two

nodes in T . Thus, the length of a longest route that any message must travel in

iPilgrim.com is equal to the diameter of T . Describe an efficient algorithm for

finding the diameter of T . What is the running time of your method?

Chapter Notes

The basic data structures of stacks, queues, and linked lists discussed in this chapter belong

to the folklore of computer science. They were first chronicled by Knuth in his seminal

book on Fundamental Algorithms [129]. In this chapter, we have taken the approach of

defining basic data structures first abstractly in terms of their methods and then in terms of

concrete implementations. This approach to data structure specification and implementa-

tion is an outgrowth of software engineering advances brought on by the object-oriented

design approach, and is now considered a standard approach for teaching data structures.

We were introduced to this approach to data structure design by the classic books by Aho,

Hopcroft, and Ullman on data structures and algorithms [8, 9].

Sequences and lists are pervasive concepts in the C++ Standard Template Library

(STL) [163], and they play fundamental roles in Java as well. Lists are also discussed in the

book by Arnold and Gosling [14]) and others, including Aho, Hopcroft, and Ullman [9],

who introduce the “position” abstraction, and Wood [217], who defines a list abstraction

similar to ours. Implementations of sequences via arrays and linked lists are discussed in

Knuth’s seminal book, Fundamental Algorithms [129].

The concept of viewing data structures as containers (and other principles of object-

oriented design) can be found in object-oriented design books by Booch [33] and

Budd [40]. The concept also exists under the name “collection class” in books by Gol-

berg and Robson [83] and Liskov and Guttag [144]. Our use of the “position” abstraction

for tree nodes derives from the “position” and “node” abstractions introduced by Aho,

Hopcroft, and Ullman [9]. Discussions of the classic preorder, inorder, and postorder tree

traversal methods can be found in Knuth’s Fundamental Algorithms book [129]. The Euler

tour traversal technique comes from the parallel algorithms community, as it is introduced

by Tarjan and Vishkin [204] and is discussed by JáJá [110] and by Karp and Ramachan-

dran [124]. The algorithm for drawing a tree is part of the “folklore” of graph drawing

algorithms. The reader interested in graph drawing is referred to the handbook edited by

Tamassia [203] and the book by Di Battista, Eades, Tamassia and Tollis [55]. The puzzler

in Exercise R-2.4 was communicated by Micha Sharir.

